Транспирация растений

Содержание:

Определение уровня транспирации

Разработано много методик и приборов для определения уровня транспирации, например, лизиметры, термосинтетические сенсоры.

Практические опыты учёных показали, что вода, которую испаряют растения, по своему составу различается с впитываемой жидкостью.

Лист, за время сезона, испаряет воды несколько раз больше своего веса. Например, с одного гектара пшеницы испаряется за время выращивания до 3 000 тонн воды.

Специалисты сельского хозяйства используют в своей работе специальный термин – транспирационный коэффициент. Это отношение массы воды, которую затратили для полива к прибавлению сухой массы растения.

В стандартном выражении он равняется от 200 до 600 (в некоторых случаях 1 000) единиц. То есть для выращивания 1 кг с/х культуры нужно примерно 600 л воды.

В засушливых регионах у растений существуют специальные приспособления, которые помогают им уменьшить уровень транспирации. Например, это маленькая поверхность листвы или их видоизменение, водонепроницаемая плёнка кутикулы.

Часто растения применяют САМ — фотосинтез, когда поры листьев открыты только ночью при низкой температуре воздуха и высокой влажности.

Если объём воды, потребляемый растением, совпадает с её расходом, то водный баланс хорошо регулируется, развивается растение гармонично. Во время роста могут возникнуть различные ситуации нарушения водного баланса.

С короткими эпизодами растения справятся, но продолжительные перебои с водой способны привести к гибели.

Проект: «Транспирационный эксперимент»

 Растения потеют? Не совсем, но они теряют воду. Подсчитайте недостающую массу с помощью этого эксперимента, узнав, как растения испаряют воду через транспирацию.

Что нам понадобится:

  • три небольших тонколистных растения;
  • три небольших широколистных растения;
  • маленькая лейка;
  • линейка;
  • 6 пластиковых пакетов, достаточно больших, чтобы полностью покрыть горшок с растением;
  • малярный скотч.

Ход эксперимента:

  1. Возьмите шесть маленьких растений, три с широкими листьями и три с узкими листьями. Используйте малярный скотч и ручку, чтобы написать на каждом растении его номер.
  2. Поливайте растения, пока вода не будет выливаться из нижней части горшка. Если растения очень сухие или сухая почва, то их тщательно полейте и подождите несколько минут. Затем полейте их снова. Когда вода впитается и горшок наполнится водой, а почва будет мягкая как губка — самое время взвесить растения. Нарисуйте таблицу, которая показывает, сколько весит каждое растение до и после эксперимента.
Название растения Вес До Вес После
№ 1 (Тонкий лист)
  1. Создайте гипотезу, обратившись к этим вопросам:
  • Если вы поливаете растения, а затем ставите их на солнце, что будет с водой?
  • Изменится ли что-нибудь, если вы обернете пластиковым пакетом вокруг основания растения?
  • Как добавление пакета изменит ваш эксперимент?
  1. Поставьте растения на теплое солнце на час, надев на них пакеты, затем снимите их и снова взвесьте каждое растение. Запишите вес в таблицу. Вес отличается?  Остался тем же? Почему вы думаете, что это так? Разные растения потеряли разное количество веса или потеряли примерно одинаковое количество? Почему?
  2. Высушите изнутри каждый пластиковый пакет. Повторно запечатайте их на растениях, верните растения в солнечное место и продолжайте измерять и взвешивать в течение нескольких часов, не добавляя больше воды. Что происходит?

Вывод:

Во время эксперимента по транспирации растения будут терять воду, даже если они находятся в пакетах. Растения с широкими листьями потеряют немного больше воды, чем растения с тонкими листьями, но в зависимости от размера растения это может быть очень сложно измерить.

Почему?

Так как же вода выходит из растений?

В жаркий день, вы можете немного вспотеть. Растения также «потеют». Подобно тому, как мы теряем воду через нашу кожу, растения теряют воду через свои листья.

Хотя вы, возможно, не сможете их увидеть , на листьях растений есть маленькие поры или отверстия. Взгляните на обратную сторону листа под микроскопом, и вы сможете увидеть эти отверстия, которые называются устьицами. Вот, где растения могут терять воду в результате транспирации.

Несмотря на то, что это невидимый процесс, потеря воды из растений в результате транспирации является важной частью круговорота воды, потому что она добавляет много воды в наш воздух. Всего за один год каждый лист на земле может отдать воды весом намного больше своего собственного. Фактически, большой дуб может давать воздуху больше 150000 литров воды в год!

Фактически, большой дуб может давать воздуху больше 150000 литров воды в год!

Вы, вероятно, поливаете растения в своем доме, чтобы они оставались здоровыми — и, если растениям нужна вода, то почему они ее теряют? Транспирация происходит отчасти потому, что растения должны дышать. Растения должны поглощать углекислый газ, и для этого им нужно открыть свои устьица. Когда это происходит — выходит вода. Вы, вероятно, испытывали это и во время своего собственного дыхания: в холодный день вы даже можете видеть воду от своего дыхания, которая создает облачка в воздухе.

Транспирация также помогает растениям, охлаждая их, подобно тому, как пот помогает нам регулировать температуру нашего тела. Транспирация также играет большую роль, помогая воде перемещаться вокруг растения, изменяя давление воды в клетках растения. Это помогает минералам и питательным веществам подниматься вверх от корней растения.

Дальнейшее исследование:

Что будет с растением, если вы обмажете вазелином его листья? Как насчет оливкового масла? Попробуйте смазывать различными веществами листья и взвешивать растение, затем повторите эксперимент. Что будет происходить в теплой комнате? Транспирация будет выражена больше или меньше?

Интенсивность транспирации

Интенсивность транспирации – это количество влаги, испаряемой с дм2 растения за расчетную единицу времени. Данный параметр регулируется величиной раскрытия устьичных щелей, которая, в свою очередь, зависит от количества попадающего на растение света. Далее рассмотрим, как влияет свет на интенсивность транспирации.

Деформация клеток эпидермиса проходит под действием фотосинтеза, в процессе которого происходит преобразование крахмала в сахара.

При свете у растений начинается процесс фотосинтеза. Давление в замыкающих клетках увеличивается, что дает возможность вытягивать воду из соседних клеток эпидермиса. Объем клеток увеличивается, устьица раскрываются.
В вечернее и ночное время происходит преобразования сахаров в крахмал, в процессе которого клетки эпидермиса «откачивают» влагу из замыкающих клеток растения. Их объем уменьшается, устьица закрываются.

Помимо света на интенсивность транспирации оказывает влияние ветер и физические характеристики воздуха:

Чем ниже уровень влажности атмосферного воздуха, тем быстрее происходит испарение воды, а значит и скорость влагообмена.
При повышении температуры возрастает упругость водяных паров, которая приводит к снижению влажностных характеристик окружающей среды и увеличению объема испаряемой воды.
Под влиянием ветра значительно увеличивается скорость испарение влаги, тем самым ускоряется перенос влажного воздуха с поверхности листа, вызывая усиление водообмена.

Для определения данного параметра не следует забывать и об уровне влажности почвы. Если ее недостаточно, значит и наблюдается ее недостаток в растении. Снижение объема влаги в растительном организме автоматически изменяет интенсивность испарения.

Транспирация: виды

Испарение воды растениями проходит в три фазы:

  1. Продвижение из жилок в верхние слои мезофилла.
  2. Испарение из стенок клетки в межклеточные промежутки и пустоты вокруг устьиц; последующий выход наружу.
  3. Последний этап подразделяется на:
  • транспирацию через устьица — устьютную;
  • испарение в атмосферу непосредственно через клетки эпидермиса – кутикулярную транспирацию.

Устьютная

Ее можно разбить на две стадии.

  1. Переход воды из капельного состояния (в таком виде она пребывает в клеточных оболочках) в газообразное в межклеточных промежутках. В это время растение способно регулировать силу транспирации. Если воды ему не хватает, в корневых и стеблевых сосудах возникает сильное напряжение, задерживающее продвижение воды к клеткам листьев. И испарение замедляется.
  2. Выделение пара на поверхность через устьица. Как только водяной пар выходит из межклеточных пустот, они снова заполняются за счет перемещения из оболочек клеток. Основной рычаг координирования транспирации – это степень открытости устьиц.

Транспирация, которую биологи назвали кутикулярной, у разных видов растений очень отличается по своей интенсивности. У одних потеря влаги за ее счет совсем незначительна. Например, семействам магнолиевых и хвойных толстый эпидермис и кутикула поверх него на листьях не дают терять много жидкости. У других транспортируемая таким образом вода может составлять до 50 процентов общего объема. Особенно силен процесс, когда листья еще молоденькие, с очень тонким эпидермисом и кутикулой.

Виды, функции и строение тканей растений.

Образовательная ткань растений.

Название ткани Строение Местонахождение Функции
1. Верхушечная меристема Молодые тонкостенные клетки с крупным ядром и густой цитоплазмой. Их деление происходит путем митоза . Кончики корней, почки побегов (конусы нарастания) Рост органов в длину благодаря делению клеток; образование тканей корня, стебля, листьев, цветков
2. Боковая (камбий) Между древесиной и лубом стеблей и корней Рост корня и стебля в толщину; камбий внутрь откладывает клетки древесины, а наружу — клетки луба.
 3. Вставочная меристема  Между постоянными тканями  Периодическое отрастание поврежденных листьев и стеблей

Образовательная ткань растений

Вставочная меристема

Покровная ткань растений.

Название ткани Строение Местонахождение Функции
1. Первичная Кожица (эпидерма) Плотно сомкнутые живые клетки с устьицами и утолщенной наружной стенкой  Покрывает листья, зеленые стебли, все части цветка Защита органов от колебаний температуры, повреждений и высыхания
2. Вторичная — пробка Мертвые клетки, их стенки пропитаны жироподобным веществом суберином Покрывает зимующие клубни, корневища, корни, стебли
3. Корка (покровный комплекс) Много слоев пробки, а также другие мертвые ткани Покрывает нижнюю часть стволов деревьев

Клетка эпидермы

Строение эпидермы

Покровная ткань растений — корка

Проводящая ткань растений.

Название ткани Строение Местонахождение Функции
1. Сосуды древесины – ксилема Полые трубки с одревесневающими стенками и отмершим содержимым Древесина (ксилема), проходящая вдоль корня, стебля, жилок листьев Проведение воды и минеральных веществ из почвы в корень, стебель, листья, цветки

2.Ситовидные трубки луба — флоэма

Сопровождающие клетки  или клетки-спутницы

Вертикальный ряд живых клеток с ситовидными поперечными перегородками

Сестринские клетки ситовидных элементов, сохранившие  свою структуру

Луб (флоэма), расположенный вдоль корня, стебля, жилок листьев

Всегда располагаются вдоль ситовидных элементов (сопровождают их)

Проведение органических веществ из листьев в стебель, корень, цветки

Принимают активное участие в проведении органических веществ по ситовидным трубкам флоэмы

3. Проводящие сосудисто-волокнистые пучки Комплекс из древесины и луба в виде отдельных тяжей у трав и сплошного массива у деревьев Центральный цилиндр корня и стебля; жилки листьев и цветков  Проведение по древесине воды и минеральных веществ; по лубу — органических веществ; укрепление органов, связь их в единое целое

Проводящая ткань

Проводящая ткань

Сопровождающая клетка

Механическая ткань растений.

Название ткани Строение Местонахождение Функции
1. Колленхима Живые клетки с неравномерно утолщенными стенками В первичной коре молодых стеблей Укрепление молодых растущих органов
2. Волокна Длинные клетки с толстыми одревесневающими стенками и отмершим содержимым Вокруг проводящих сосудисто-волокнистых пучков Укрепление органов растения благодаря образованию каркаса
3. Склереиды Толстостенные клетки, нередко одревесневшие Твердые оболочки плодов, в мякоти незрелых плодов

Механические ткани растений

Механические ткани растений

Основная ткань растений.

Название ткани Строение Местонахождение Функции
1. Ассимиляционная Столбчатая и губчатая ткань с большим количеством хлоропластов Мякоть листа, зеленые стебли Фотосинтез, газообмен
2. Запасающая Однородные тонкостенные клетки, заполненные зернами крахмала, белка, каплями масла, вакуолями с клеточным соком Корнеплоды, клубни, луковицы, плоды, семена Отложение в запас белков, жиров, углеводов (крахмал, сахар, глюкоза, фруктоза)

Основные ткани растений

Основные ткани растений

На рисунке ниже представлен сосудисто-волоконный проводящий открытый пучок.

Сосудисто-волоконный проводящий открытый пучок

  1. Флоэма
  2. Ксилема
  3. Камбий
  4. Склеренхимные волокна

Информация о статье:

Ткани растенийВиды, функции и строение тканей растений.

Date Published: 11/29/2016
В статье описываются основные ткани растений. Их функции, строение. В качестве примеров приведены рисунки.

10 / 10 stars

Кавитация [ править ]

Чтобы поддерживать градиент давления, необходимый для того, чтобы растение оставалось здоровым, оно должно постоянно поглощать воду своими корнями. Они должны быть в состоянии удовлетворить потребности в воде, потерянной из-за испарения. Если растение не способно приносить достаточно воды, чтобы оставаться в равновесии с транспирацией, происходит событие, известное как кавитация . Кавитация — это когда растение не может обеспечить свою ксилему достаточным количеством воды, поэтому вместо того, чтобы заполняться водой, ксилема начинает заполняться водяным паром. Эти частицы водяного пара объединяются и образуют засоры в ксилеме растения. Это мешает растению транспортировать воду по своей сосудистой системе. Нет очевидной картины того, где кавитация возникает по всей ксилеме растения. Если не предпринять эффективных мер по уходу, кавитация может привести к тому, что растение достигнет точки постоянного увядания и погибнет. Следовательно, у растения должен быть метод, с помощью которого можно удалить эту кавитационную закупорку, или он должен создать новое соединение сосудистой ткани по всему растению. Растение делает это, закрывая устьица на ночь, что останавливает поток транспирации. Это затем позволяет корням создавать давление более 0,05 МПа, и это способно разрушить закупорку и наполнять ксилему водой, повторно соединяя сосудистую систему. Если растение не может создать достаточное давление, чтобы устранить засорение, оно должно предотвратить распространение засора с помощью груши, а затем создать новую ксилему, которая может повторно соединить сосудистую систему растения.

Ученые начали использовать магнитно-резонансную томографию(МРТ) для неинвазивного мониторинга внутреннего состояния ксилемы во время транспирации. Этот метод визуализации позволяет ученым визуализировать движение воды по всему растению. Он также может видеть, в какой фазе находится вода в ксилеме, что позволяет визуализировать события кавитации. Ученые смогли увидеть, что в течение 20 часов солнечного света более 10 сосудов ксилемы начали заполняться частицами газа, становящимися кавитацией. Технология МРТ также позволила увидеть процесс восстановления этих ксилемных структур на заводе. После трех часов в темноте было замечено, что сосудистая ткань пополнилась жидкой водой. Это стало возможным, потому что в темноте устьица растения закрыты и транспирация больше не происходит.Когда транспирация прекращается, кавитационные пузыри разрушаются давлением, создаваемым корнями. Эти наблюдения предполагают, что МРТ способны контролировать функциональное состояние ксилемы и позволяют ученым впервые просматривать события кавитации.

Механизм и интенсивность транспирации

Растения поглощают лишь незначительную часть всего объема воды, который добывают из грунта – 0,2 процента, иногда немного больше. Все остальное испаряется в воздух. Механизм работы верхнего конечного двигателя достаточно прост. Основан он на том, что обычно в атмосфере маловато водяных паров, а значит, ее водный потенциал можно охарактеризовать как негативный. Например, при относительной влажности воздуха в 90 процентов атмосферное давление равняется 140 барам. А у подавляющего большинства представителей царства флоры давление внутри листа варьируется между 1 и 30 барами. Такой большой разрыв и обеспечивает транспирацию. Водный дефицит, спускаясь по клеткам от листьев по стеблям, неминуемо достигает корней. Это вынуждает нижний двигатель «запускаться», всасывая воду из грунта. А испарение с поверхности листьев поднимает ее, вместе со всеми минеральными солями, обратно наверх.

Есть несколько факторов, влияющих на интенсивность транспирации.

  1. «Наполненность» растения водой. Когда она достигает критического уровня, устьица сужаются.
  2. Насыщенность воздуха углекислым газом. Большинство растений на чрезмерную его концентрацию отвечают закрытием устьиц.
  3. Освещение. Обычно когда светло, устьица открыты. Темнеет – закрываются.
  4. Температура воздуха. Переваливая за 35-40°С, она провоцирует закрытие устьиц.
  5. Температура поверхности самого листа. Нагреваясь на каждые 10°С, лист отдает вдвое больше влаги.
  6. Влажность воздуха и скорость ветра. Чем суше атмосфера, тем выше транспирация.

Лист как орган транспирации

Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.

Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.

Механизм раскрытия устьиц заключается в следующем:

По окружности устий расположены замыкающие клетки.
При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.

Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр

Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов

Женские духи Tom Ford Black Orchid: описание аромата

Сперва сообщим, как видит эту композицию сам создатель. К слову сказать, «Черная орхидея» является в некотором роде дебютанткой. Это первый восточный аромат, созданный Томом Фордом для женщин. Как утверждает создатель, композиция балансирует на грани классики и чего-то неординарного, дерзкого. Доминантой служит томная орхидея и теплая древесина. Раскрывается композиция со сложного аккорда иланг-иланга и черного трюфеля. Чтобы придать нотку свежести в эту увертюру, автор примешал к ним черную смородину и бергамот. В сердце композиции, конечно же, царит черная орхидея, аромат которой удалось извлечь с помощью особой технологии. Эту томную и магическую красавицу тропиков оттеняют фруктовые аккорды, цветы темной окраски и насыщенный аромат лотоса.

Роковая женщина не может всегда держать покоренного мужчину в напряжении. База у этого аромата похожа на материнские объятия. В них можно забыться, бесконечно купаясь в теплой ванили, черном мексиканском шоколаде, сандале, ветивере, ладане и пачули. Парфюм Tom Ford Black Orchid (женский) очень стойкий, шлейф струящийся, очень характерный, но не душный. Он окутывает свою хозяйку, и как будто щитом отгораживает ее от серых будней, давая ей силу почувствовать себя неотразимой. Ведь именно этого так часто не хватает сегодняшним дамам.

Лист как орган транспирации

Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.

Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.

Механизм раскрытия устьиц заключается в следующем:

По окружности устий расположены замыкающие клетки.
При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.

Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.

Интенсивность испарения

Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.

Интенсивность испарения зависит от следующих факторов:

  • Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться 🙂
  • Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
  • Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
  • Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.

Кажется, правильнее говорить «скорость испарения» вместо интенсивности? Или нет?

Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.

Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.

По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.

Что такое транспирация

Транспирация – это регулируемый физиологический процесс движения воды по органам растительного организма, завершающийся ее потерей через испарение.

Знаете ли вы? Слово «транспирация» происходит от двух латинских слов: trans – через и spiro – дыхание, дышать, выдыхать. Дословно термин переводится как выделение пота, потение, испарина.
В процессе этого движения большая часть влаги теряется (испаряется), особенно при ярком свете, сухом воздухе, сильном ветре и высокой температуре.

Таким образом, под влиянием атмосферных факторов запасы воды в надземных органах растения постоянно расходуются и, следовательно, должны все время пополняться за счет новых поступлений. По мере испарения воды в клетках растения возникает некая сосущая сила, которая «подтягивает» воду из соседних клеток и так по цепочке – до самых корней. Таким образом, главный «двигатель» тока воды от корней к листьям находится именно в верхних частях растений, которые, говоря упрощенно, работают как маленькие насосы.

Если вникнуть в процесс чуть глубже, то водный обмен в жизни растений представляет собой следующую цепочку: вытягивание воды из почвы корнями, подъем ее к надземным органам, испарение. Эти три процесса находятся в постоянном взаимодействии. В клетках корневой системы растения образуется так называемое осмотическое давление, под воздействием которого находящаяся в почве вода активно всасывается корнями.

Когда в результате появления большого количества листьев и повышения температуры окружающей среды вода как бы начинает высасываться из растения самой атмосферой, в сосудах растений возникает дефицит давления, передающийся вниз, к корням, и подталкивающий их к новой «работе». Как видим, корневая система растения тянет воду из почвы под воздействием двух сил – собственной, активной и пассивной, передающейся сверху, которая и вызывается транспирацией.

Проект «Что такое транспирация у растений»

Транспирация
– это испарение воды
листьями. Она, испаряясь,
выходит через устьица (маленькие поры
на поверхности листьев). Этот процесс
важен для выживания любого растительного
организма. Его скорость зависит от
температуры воздуха и солнечного света.
Испарение воды листьями
способствует ее движению внутри
растения, а также растворению минеральных
солей, необходимых для питания и
охлаждения.

Большая часть поглощаемой влаги выделяется в процессе транспирации. Сложно разделить процессы испарения и транспирации, поэтому данное явление зачастую называется «эвапотранспирацией». Название сочетает два понятия: первое происходит от латинского слова «evaporatio» (испарение), суть второго описана выше.

Транспирация происходит у всех растений. Ее скорость также зависит от их физических особенностей и условий окружающей среды. Поскольку влага выделяется, главным образом, через листья, то процесс транспирации у растений с крупными листьями выражен ярче, чем у тех, у которых они небольшие.

Такие
факторы, как влажность воздуха и
температура, также влияют на скорость
транспирации. Почва тоже должна быть
достаточно влажной. Благодаря этому
проекту вы сможете сопоставить то, что
видите, с процессом проникновения влаги
в ткани растительных организмов и ее
выделения путём испарения.

Этот
опыт по биологии поможет
вам определить, сколько влаги способно
поглотиться и выделиться через испарение
воды листьями за определённый
промежуток времени. Две трубки для
тестирования или два продолговатых
трубчатых контейнера на три четверти
заполняются водой. В одну из них помещается
стебель. Нужно следить за уровнем воды,
делая записи. Измерять ее уровень нужно
через определённый промежуток времени.
На основе полученных результатов
подготовьте таблицы и графики. Этот
проект поможет подтвердить или
опровергнуть идею о том, что
растения выделяют влагу во время процесса
под названием «транспирация», вследствие
которого происходит испарение.

Что нам понадобится:

  • 2 тестовые трубки;
  • пустая металлическая банка;
  • пластиковый пакет;
  • вода;
  • ручка;
  • линейка;
  • изолента;
  • секундомер или часы;
  • свежая ветка или небольшие веточки с листьями (не меньше 5 на каждой из них).

За
исключение ветки и тестовых трубок, все
материалы для данного проекта можно
приобрести в магазинах или по интернету.
2 тестовые трубки можно взять на время
в лаборатории школы или приобрести в
магазине. Большинство детских наборов
юного химика включает инструменты,
которые пригодны для этого проекта.

Ход эксперимента:

  1. Заполните две трубки водой приблизительно на три четверти. Поставьте их в пустую металлическую банку.
  2. Для того чтобы контролировать испарение, накройте одну тестовую трубку чистым целлофаном. Закрепите его при помощи изоленты.
  3. Проткните стеблем целлофан. Он должен находиться в прямом положении. Отверстие запечатайте при помощи изоленты.
  4. Линейкой измерьте количество воды в каждой трубке. Убедитесь, что верно измерили ее уровень. Держите ее прямо и проведите измерение от верхней границы до дна. Запишите полученные данные в таблицу.
Время Тест с веткой (A) Тест без ветки (B)
Начало
Через 15 мин.
Через 30 мин.
Через 45 мин.
Через 60 мин.
  1. Подождите 15 минут. Измерьте уровень воды в каждой трубке ещё раз. Запишите полученные данные в таблицу.
  2. Повторите шаг 4 ещё три раза. Каждый раз записывайте полученные результаты.
  3. Подождите 24 часа. Измерьте уровень воды в каждой трубке. Запишите результаты.
  4. Используя полученные данные, составьте гистограмму (в виде столбцов) или линейную диаграмму. На оси X обозначьте скорость транспирации (в минутах), а на оси Y – уровень воды (высота в мм).
  5. Подсчитайте скорость, выполняя следующие операции:

Тест с веткой:

Начальный уровень – Уровень через 24
часа = Разница уровня (A)

Тест без ветки:

Начальный уровень – Уровень через 24
часа = Разница (B)

Разница уровня воды благодаря транспирации:

Разница A — Разница B = Потеря воды через транспирацию

Начальное значение Значение через 24 часа Количество потерянной воды
Тест с веткой
Тест без ветки
  1. Чтобы подсчитать скорость транспирации и испарения в час, используйте следующие формулы: Количество потерянной воды ÷ 24 часа = ________ испарения воды/час.

Вывод:

Вследствие чего уровень воды в трубке со стеблем уменьшается? Происходит ли то же самое в трубке, заполненной водой, но без растения? Какова скорость транспирации по вашим подсчётам? Используя графики, сравните ее скорость со скоростью испарения. Что служило контрольной точкой для данного исследования?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector