Селекция животных: особенности и методы отбора, виды изменчивости, современные достижения

История

Селекция растений началась с оседлого земледелия и, в частности, с одомашнивания первых сельскохозяйственных растений, практика, которая, по оценкам, насчитывает от 9000 до 11000 лет. Первоначально первые фермеры просто отбирали пищевые растения с особыми желательными характеристиками и использовали их в качестве прародителей для последующих поколений, что приводило к накоплению ценных свойств с течением времени.

Технология прививки применялась в Китае до 2000 г. до н.э.

К 500 г. до н.э. прививка была хорошо развита и практиковалась.

Грегор Мендель (1822–1884) считается «отцом генетики ». Его эксперименты с гибридизацией растений привели к установлению им законов наследования . Генетика стимулировала исследования по улучшению растениеводства за счет селекции растений.

Современное растениеводство — это прикладная генетика, но ее научная основа шире и охватывает молекулярную биологию , цитологию , систематику , физиологию , патологию , энтомологию , химию и статистику ( биометрию ). Также была разработана собственная технология.

2.1. Методы селекции растений, применяемые основателем селекции И.В. Мичуриным

Многие методы селекции растений были предложены
И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств
гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые
качества, в его крону прививались черенки с родительского организма, имеющего
хорошие вкусовые качества; или гибридное растение прививали на подвой, в
сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на
возможность управления доминированием определенных признаковпри
развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие
определенными внешними факторами. Например, если гибриды выращивать в открытом
грунте, на бедных почвах, повышается их морозостойкость.

Какие семена сажают в России

В 2018 году ученые из Омского государственного аграрного университета вывели сорт пшеницы «Сова» с фиолетовыми зернами. Она содержит много антиоксидантов и богата антоцианами, которые придают зернам необычный цвет и помогают бороться с воспалительными процессами. Новый сорт устойчив к засухе и вредителям и не требует обработки химикатами.

Над выведением «Совы» исследователи работали около десяти лет. После трехлетних испытаний ее внесут в государственный реестр, ожидают селекционеры.

Всего в реестре сортов, допущенных к использованию на территории России, около 25 тыс. наименований. Но в промышленных масштабах используется только малая часть. При этом пшеница — единственная из ключевых сельхозкультур, производство которой опирается на разработки российских селекционеров.

По другим культурам ситуация совсем другая. За 2009-19 годы в российском АПК резко выросла доля семян зарубежной селекции, выяснили авторы исследовательского проекта «Селекция 2.0». Его подготовили эксперты из Института права и развития ВШЭ-Сколково, Международного центра конкурентного права и политики ВШЭ-Сколково и Центра технологического трансфера НИУ ВШЭ при поддержке Федеральной антимонопольной службы. Основные выводы доклада представили на круглом столе в «Российской газете».

По данным исследователей, доля иностранной селекции по кукурузе за последние десять лет увеличилась с 37 до 58%, по подсолнечнику — с 53% до 73%. Выше всего показатель по сахарной свекле: 98% площадей засеяно зарубежными сортами.

«Если ничего не менять, пшеница с высокой вероятностью повторит траекторию развития других культур», — прогнозируют авторы доклада. По их словам, пока глобальные компании мало вкладывались в биотехнологическую селекцию пшеницы: у этой культуры сложный геном, который ученые расшифровали только в 2018 году.

Но теперь селекционные программы по пшеницы будут обновляться. Это может поставить под угрозу в том числе позиции РФ как экспортера зерновых, предостерегают участники рынка.

Эдуард Зернин, предправления Союза экспортеров зерна:

«Россия держит лидерство на мировом рынке пшеницы в условиях жесткой конкурентной борьбы. И хотя некоторые страны — вчерашние лидеры — сфокусировали свое производство на более маржинальных культурах (в первую очередь, сое и кукурузе), мы чувствуем серьезное давление со стороны Австралии, особенно на рынках Юго-Восточной Азии, а также Аргентины. Обе страны имеют благоприятное расположение, которое в условиях глобального изменения климата начинает играть критическую роль.

Более того, в 2020 году Аргентина первой в мире одобрила коммерческое производство засухоустойчивой генно-модифицированной пшеницы. Это может привести к революционному переделу рынка, если Аргентина сможет существенно нарастить объемы производства и снизить себестоимость. Крупнейшие мировые потребители озабочены скорее ценой, чем качеством закупаемого зерна.

К слову, Китай, крупнейший производитель пшеницы в мире, недавно принял решение в направлении индустриального применения биотехнологий в селекции растений. Похоже, в долгосрочной перспективе коммерческая адаптация ГМО-культур станет главной угрозой нашим лидирующим позициям на мировом рынке пшеницы».

Достижения современной селекции животных

Современная наука использует полный спектр способов выведения новых пород животных – от самых старых, известных несколько сотен лет, до более современных, появившихся только в XX веке. Развиваются и новые методы селекции животных, наиболее перспективным из которых является клеточная инженерия. Суть его заключается в передаче информации о признаках, характерных для взрослой особи посредством соматических клеток. Благодаря этому достигаются главные цели селекции животных, заключающиеся в выращивании произвольного числа особей с выдающейся продуктивностью.

В настоящее время селекционеры ведут работу над выращиванием клонов, которые могли бы обладать теми же качествами, что и их прародитель. Начиная с 1997 года, когда удалось вырастить всемирно известную овечку Долли, были созданы десятки экспериментальных животных. Венцом совместного творения селекционеров и генетиков стала клонированная китайскими учёными корова с увеличенным слоем жира на мышцах, которая смогла родить здоровое потомство.

Селекция в российском животноводстве

Развитие селекции в отечественном животноводстве происходит более традиционными путями, нежели на западе. Для успешного решения задач общенационального масштаба было основано несколько селекционно-генетических центров. В своей работе они используют все современные методы, кроме клонирования животных, которое по-прежнему вызывает серьёзные споры по всему миру. Отечественные специалисты вывели множество ценных пород, среди которых:

  • Цигайская овца – обладает высокой плодовитостью (со 100 маток получают 120-150 ягнят) и даёт около 100 л молока за 4 месяца лактации.
  • Чёрно-пёстрый тип КРС – обеспечивают до 5 тонн молока в год жирностью около 3,6-3,8%.
  • Асканийская овца – отличается высокой плодовитостью (со 100 маток получают до 150 ягнят) и быстрым ростом (1,5 годовалая овца по весу сравнима со взрослой особью). С асканийских овец можно получить много шерсти. Известен случай, когда настриг шерсти с одного барана весил 30 кг.
  • Чёрно-пёстрая порода свиней – особи достигают массы 100 кг всего за 180 дней, а приплод составляет от 9 до 12 поросят за опорос.
  • Архаромеринос – единственная порода отечественных овец, выведенная методом межвидовой гибридизации. В результате получилась крупная, устойчивая к горным условиям особь. Масса баранов достигает 110-115 кг, а маток – 60-65 кг, плодовитость 110-120 ягнят на одну матку.

В настоящее время ведутся серьёзные работы по скрещиванию российской “бурёнки” с голландской коровой, благодаря чему последняя станет более приспособленной к российским климатическим условиям.

Значение селекции для сельского хозяйства трудно переоценить. Если бы люди в своё время не одомашнили животных, наверняка ни о каком развитии цивилизации не могло идти и речи. Если бы животноводство не получало более производительных и здоровых животных, проблема голода на Земле имела глобальные масштабы. Поэтому селекцию можно назвать основной наукой отрасли, которая приносит даже больше пользы, нежели современные методы выращивания, содержания потомства, убоя и доения.

Роль селекции растений в органическом сельском хозяйстве

Критики органического сельского хозяйства заявляют, что оно слишком низкоурожайное, чтобы быть жизнеспособной альтернативой традиционному сельскому хозяйству. Однако отчасти такая низкая производительность может быть результатом выращивания плохо адаптированных сортов. Подсчитано, что более 95% органического сельского хозяйства основано на традиционно адаптированных сортах, даже несмотря на то, что производственная среда в органических и традиционных системах земледелия сильно отличается из-за их отличительных методов управления. В частности, у органических фермеров меньше ресурсов для контроля своей производственной среды, чем у традиционных производителей. Селекция сортов, специально адаптированных к уникальным условиям органического сельского хозяйства, имеет решающее значение для того, чтобы этот сектор полностью реализовал свой потенциал. Для этого требуется отбор по таким чертам, как:

  • Эффективность использования воды
  • Эффективность использования питательных веществ (особенно азота и фосфора )
  • Конкурентоспособность сорняков
  • Устойчивость к механической борьбе с сорняками
  • Устойчивость к вредителям / болезням
  • Раннеспелость (как механизм избегания особых стрессов)
  • Устойчивость к абиотическому стрессу (например, засуха, засоление и т. Д.)

В настоящее время немногие селекционные программы направлены на органическое сельское хозяйство, и до недавнего времени те, которые действительно касались этого сектора, в основном полагались на косвенный отбор (т. Е. Отбор в традиционных средах по признакам, которые считаются важными для органического сельского хозяйства). Однако, поскольку разница между органической и обычной средой велика, данный генотип может работать по-разному в каждой среде из-за взаимодействия между генами и окружающей средой (см. Взаимодействие между генами и средой ). Если это взаимодействие является достаточно серьезным, важный признак, необходимый для органической среды, может не проявиться в обычной среде, что может привести к отбору плохо адаптированных особей. Чтобы гарантировать выявление наиболее адаптированных сортов, сторонники органической селекции теперь поощряют использование прямого отбора (то есть отбора в целевой среде) по многим агрономическим признакам.

Существует множество классических и современных методов селекции, которые можно использовать для улучшения сельскохозяйственных культур в органическом сельском хозяйстве, несмотря на запрет на генетически модифицированные организмы . Например, контролируемые скрещивания между особями позволяют рекомбинировать желаемые генетические вариации и передавать их семенному потомству посредством естественных процессов. Отбор с помощью маркеров также можно использовать в качестве диагностического инструмента для облегчения отбора потомства, обладающего желаемым признаком (признаками), что значительно ускоряет процесс разведения. Этот метод оказался особенно полезным для внедрения генов устойчивости в новые фоны, а также для эффективного отбора множества генов устойчивости, объединенных пирамидой в одного человека. К сожалению, в настоящее время недоступны молекулярные маркеры для многих важных признаков, особенно сложных, контролируемых многими генами.

Разведение и продовольственная безопасность

Чтобы сельское хозяйство процветало в будущем, необходимо внести изменения для решения возникающих глобальных проблем. Эти проблемы включают нехватку пахотных земель, все более суровые условия возделывания сельскохозяйственных культур и необходимость поддержания продовольственной безопасности, что предполагает возможность обеспечить население планеты достаточным питанием. Культуры должны иметь возможность созревать в различных средах, чтобы обеспечить доступ во всем мире, что предполагает решение проблем, включая устойчивость к засухе. Было высказано предположение, что глобальные решения достижимы посредством процесса селекции растений с его способностью отбирать определенные гены, позволяющие культурам работать на уровне, который дает желаемые результаты.

Урожай

С ростом населения необходимо увеличивать производство продуктов питания. По оценкам, к 2050 году необходимо увеличить производство продуктов питания на 70%, чтобы выполнить Декларацию Всемирного саммита по продовольственной безопасности. Но в связи с деградацией сельскохозяйственных земель простое выращивание сельскохозяйственных культур больше не является жизнеспособным вариантом. В некоторых случаях новые сорта растений могут быть выведены путем селекции растений, которые обеспечивают повышение урожайности, не полагаясь на увеличение площади земель. Пример этого можно увидеть в Азии, где производство продуктов питания на душу населения увеличилось вдвое. Это было достигнуто не только за счет использования удобрений, но и за счет использования более качественных культур, специально созданных для данной местности.

Пищевая ценность

Селекция растений может способствовать глобальной продовольственной безопасности, поскольку это рентабельный инструмент повышения питательной ценности кормов и сельскохозяйственных культур. Повышение питательной ценности кормовых культур за счет использования аналитической химии и технологии ферментации рубца было зарегистрировано с 1960 г .; Эта наука и технология дали селекционерам возможность проверять тысячи образцов за небольшой промежуток времени, а это значит, что селекционеры могли быстрее идентифицировать высокопроизводительный гибрид. Генетическое улучшение заключалось в основном в перевариваемости сухого вещества in vitro (IVDMD), что привело к увеличению на 0,7-2,5%, при увеличении IVDMD всего на 1% один Bos Taurus, также известный как мясной крупный рогатый скот, сообщил об увеличении суточного прироста на 3,2%. Это улучшение указывает на то, что селекция растений является важным инструментом в переводе сельского хозяйства будущего на более продвинутый уровень.

Экологические стрессоры

Селекция гибридных культур стала чрезвычайно популярной во всем мире в борьбе с суровыми условиями окружающей среды

Из-за продолжительных периодов засухи и отсутствия воды или азота устойчивость к стрессу стала важной частью сельского хозяйства

Селекционеры сосредоточили свое внимание на определении культур, которые обеспечат урожайность в этих условиях; способ добиться этого — найти сорта культуры, устойчивые к засушливым условиям с низким содержанием азота

Из этого очевидно, что селекция растений имеет жизненно важное значение для выживания сельского хозяйства будущего, поскольку она позволяет фермерам выращивать устойчивые к стрессу культуры, тем самым повышая продовольственную безопасность. В странах с суровыми зимами, таких как Исландия , Германия и дальше на восток Европы, селекционеры занимаются селекцией на устойчивость к морозам, постоянному снежному покрову, морозно-засухе (высыхание от ветра и солнечной радиации под морозом) и высоким уровням влажности

в почве зимой.

В странах с суровыми зимами, таких как Исландия , Германия и дальше на восток Европы, селекционеры занимаются селекцией на устойчивость к морозам, постоянному снежному покрову, морозно-засухе (высыхание от ветра и солнечной радиации под морозом) и высоким уровням влажности. в почве зимой.

Селекция животных

Селекция животных — наука о выведении новых пород домашних и сельскохозяйственных животных, обладающих высокой продуктивностью, жизнеспособностью, устойчивостью к болезням и неблагоприятным условиям окружающей среды.

❖ Особенности животных, вытекающие из природы их организма и затрудняющие и замедляющие процесс их селекции:
■ животные, имеющие хозяйственное значение, размножаются только половым способом (отсутствует вегетативное размножение и самооплодотворение);
■ половая зрелость у них наступает относительно поздно, и поэтому смена поколений происходит очень редко;
■ самки приносят немногочисленное потомство.

❖ Исторические этапы селекции животных:
■ начальный этап — одомашнивание диких предковых видов животных путем бессознательного искусственного отбора;
■ следующие этапы: направленный, осознанный массовый и индивидуальный искусственный отбор и гибридизация с последующим отбором.

В селекции животных важен учет экстерьера и технологических признаков.

Экстерьер — совокупность фенотипических признаков, характеризующих наружные формы животных, их телосложение и соотношение частей тела (примеры: телосложение скаковой лошади, форма вымени коровы и др.).

Примеры технологических признаков: скорость отдачи молока, характер поведения в группе и др.).

❖ Методы селекции животных:

■ подбор подходящих родительских пар с учетом их родословных, в которых должны быть отмечены экстерьерные особенности и продуктивность в течение ряда поколений;

■ гибридизация (скрещивание) — инбридинг и последующая межлинейная гибридизация, приводящая к гетерозису (примеры: бройлерные цыплята, белая украинская степная свинья); а также внутривидовый аутбридинг (скрещивание домашних животных с дикими предками, дающее плодовитое потомство; пример: тонкорунные овцы меринос + дикий баран архар = архаромеринос) и межвидовый аутбридинг (дающий бесплодное, но представляющее хозяйственную ценность — из-за ярко выраженного гетерозиса — потомство; примеры: лошадь + осел = мул; дромадер + бактриан = нары; белуга + стерлядь = бестер и др.);

■ индивидуальный искусственный отбор по хозяйственным признакам и экстерьеру;

■ испытание производителя по потомству: от производителя получают немногочисленное потомство и сравнивают его продуктивность со средней продуктивностью породы. Если продуктивность дочерей выше, чем матерей, то это свидетельствует о ценности производителя, и его используют для дальнейшего улучшения породы;

■ искусственное осеменение (трансплантация): оплодотворенные яйцеклетки или полученные в пробирке эмбрионы ценных пород животных (крупного рогатого скота, овец и др.) вводят в матку беспородных или низкопродуктивных животных для дальнейшего развития. Это позволяет значительно ускорить селекционную работу, интенсивно использовать высокоценных племенных животных;

■ экспериментальное получение полиплоидов (применяется в селекции тутового шелкопряда): нагреванием или воздействием рентгеновских лучей добиваются слияния ядер и цитоплазмы половых клеток двух близких пород; полиплоиды в дальнейшем размножаются партеногенезом;

■ клеточное клонирование: методом клеточной инженерии в яйцеклетках, полученных от ценных племенных животных, гаплоидные ядра замещаются диплоидными из соматических клеток. Развивающиеся зиготы имплантируются в матку жи-вотных-реципиентов; в результате получается клон особей, которые по генотипу полностью повторяют друг друга.

Научная селекция растений

Каталог Гартона 1902 года

Эксперименты Грегора Менделя с гибридизацией растений привели к его законам наследования . Эта работа стала широко известной в 1900-х годах и легла в основу новой науки генетики , которая стимулировала исследования многих ученых-растениеводов, посвященных улучшению растениеводства путем селекции растений.

Однако с конца 19 века начали создаваться успешные коммерческие селекционные предприятия. Компания Gartons Agricultural Plant Breeders в Англии была основана в 1890-х годах Джоном Гартоном, который одним из первых осуществил перекрестное опыление сельскохозяйственных растений и коммерциализацию вновь созданных сортов. Он начал экспериментировать с искусственным перекрестным опылением сначала злаковых растений, затем видов трав и корнеплодов и разработал далеко идущие методы селекции растений.

Уильям Фаррер произвел революцию в выращивании пшеницы в Австралии, широко выпустив в 1903 г. устойчивый к грибам штамм пшеницы «Federation», который был разработан в результате его двадцатилетней селекционной работы с использованием теорий Менделя.

С 1904 по Второй мировой войне в Италии , Назарено Стрампелл создал ряд гибридов пшеницы. Его работа позволила Италии увеличить производство сельскохозяйственных культур во время так называемой « битвы за зерно » (1925–1940), а некоторые сорта были экспортированы в зарубежные страны, такие как Аргентина, Мексика и Китай. Работа Стрампелли заложила основы Нормана Борлоуга и Зеленой революции .

Зеленая революция

В 1908 году Джордж Харрисон Шулл описал гетерозис , также известный как гибридная сила. Гетерозис описывает тенденцию потомков определенного кросса превосходить обоих родителей. Обнаружение полезности гетерозиса для селекции растений привело к развитию инбредных линий, которые демонстрируют преимущество гетеротической урожайности при их скрещивании. Кукуруза была первым видом, в котором гетерозис широко использовался для получения гибридов.

К 1920-м годам были разработаны статистические методы для анализа действия генов и отделения наследственных вариаций от вариаций, вызванных окружающей средой. В 1933 году Маркус Мортон Роудс описал еще один важный метод селекции, цитоплазматическую мужскую стерильность (ЦМС), разработанный для кукурузы . CMS — это наследственный по материнской линии признак, который заставляет растение производить стерильную пыльцу . Это позволяет производить гибриды без необходимости трудоемкой очистки от метелок .

Эти ранние методы селекции привели к значительному увеличению урожайности в Соединенных Штатах в начале 20 века. Аналогичное повышение урожайности не было произведено в другом месте , пока после Второй мировой войны , то зеленая революция увеличила производство сельскохозяйственных культур в развивающихся странах в 1960 — х годах. Это замечательное улучшение было основано на трех основных культурах. Сначала была выведена гибридная кукуруза , затем — высокоурожайная и чувствительная к потребляемым ресурсам « полукарликовая пшеница » (за которую селекционер CIMMYT Н.Е. Борлоуг получил Нобелевскую премию мира в 1970 году), а на третьей — высокоурожайный «низкорослый рис» «сорта. Аналогичные заметные улучшения были достигнуты по другим культурам, таким как сорго и люцерна .

Молекулярная генетика и биореволюция

Интенсивные исследования в области молекулярной генетики привели к развитию технологии рекомбинантной ДНК (обычно называемой генной инженерией ). Развитие биотехнологических методов открыло много возможностей для селекции сельскохозяйственных культур. Таким образом, в то время как менделевская генетика позволила селекционерам растений выполнять генетические преобразования в нескольких культурах, молекулярная генетика дала ключ как к манипуляциям с внутренней генетической структурой, так и к «созданию» новых сортов в соответствии с заранее определенным планом.

Микроорганизмы

Современные знания о селекции и генетике позволяют обеспечить потребности человека в ценных продуктах питания, которые в основном получают от животноводства

Но внимание ученых привлекают и другие объекты природы – микроорганизмы. Наука долгое время считала, что ДНК является индивидуальной особенностью и не может быть передана другому организму

Но исследования показали, что ДНК бактерии могут быть успешно введены в хромосомы растений. Благодаря такому процессу качества, присущие бактерии или вирусу, приживаются в другом организме. Также давно известно влияние генетической информации вирусов на клетки человека.

Изучение генетики и селекция микроорганизмов проводятся в более короткие сроки, по сравнению с растениеводством и животноводством. Это объясняется быстрым размножением и сменой поколений микроорганизмов. Современные методы селекции и генетики – использование мутагенов и гибридизации – позволили создать микроорганизмы с новыми свойствами:

  • мутанты микроорганизмов способны к сверхсинтезу аминокислот и повышенному образованию витаминов и провитаминов;
  • мутанты азотфиксирующих бактерий способны значительно ускорить рост растения;
  • выведены дрожжевые организмы – одноклеточные грибы и многие другие.

Селекционеры и генетики используют такие мутагены:

  • ультрафиолет;
  • ионизирующая радиация;
  • этиленимин;
  • нитрозометилмочевина;
  • применение нитратов;
  • акридиновые краски.

Для эффективности мутации используются частые обработки микроорганизма малыми дозами мутагена.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector